
Physics 3 Exam Test
June 1, 2012

Useful constants: h = 6.63 10−34Js, e = 1.6 10−19C,me = 9.1 10−31kg,
LA = 6.022 10231/mol, c = 2, 99792458108m/s

1. When a metal is illuminated by light of a suitable wavelength λ it emits elec-
trons. The emission can be prevented by applying an external voltage U to the
metal. Determine the value of the Planck constant from the following data:
For λ = 279nm U = 0.66V and for λ = 245nm U = 1.26V (2 points)

Solution:

h ν = W +
1

2
mv2 and λ =

c

ν
⇒ h c

λ
= W +

1

2
mv2

When we apply a voltage of U which prohibits the emission then the
velocities will be 0 and

h c

λ
= W − eU

From the data:

h c

λ1
= W − eU1,

h c

λ2
= W − eU2

Eliminating W:

h c (
1

λ1
− 1

λ2
) = e (U2 − U1)

h = c (
1

λ1
− 1

λ2
) =

e (U2 − U1)

c ( 1
λ1
− 1

λ2
)

h =
e (U2 − U1)λ1 λ2

c (λ2 − λ1)
= 6.447 · 10−034Js

2. Calculate the commutator
[
L̂x, L̂y

]
assuming (correctly) that the classical

formula for the angular momentum can be used with operators in quantum
mechanics! (2 points)

Solution:
The classical formula written with operators instead of functions

L̂x = ŷ · p̂z − ẑ · p̂y
L̂y = ẑ · p̂x − x̂ · p̂z

Solution I.

Let’s use the formula:

[x̂j , p̂k] = i ~ δjk

[
L̂x, L̂y

]
= L̂x · L̂y − L̂y · L̂x
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= (ŷ · p̂z − ẑ · p̂y) · (ẑ · p̂x − x̂ · p̂z)− (ẑ · p̂x − x̂ · p̂z) · (ŷ · p̂z − ẑ · p̂y)

= ŷ · p̂z · ẑ · p̂x
−−−−−−−−−

− ŷ · p̂z · x̂ · p̂z
=========

− ẑ · p̂y · ẑ · p̂x
..................

+ ẑ · p̂y · x̂ · p̂z
∗∗∗∗∗∗∗∗∗∗∗∗

− ẑ · p̂x · ŷ · p̂z
−−−−−−−−−

+ ẑ · p̂x · ẑ · p̂y
..................

+ x̂ · p̂z · ŷ · p̂z
=========

− x̂ · p̂z · ẑ · p̂y
∗∗∗∗∗∗∗∗∗∗∗∗

= ŷ · p̂x · (p̂z · ẑ − ẑ · p̂z)︸ ︷︷ ︸
−i ~

+ (−ŷ · p̂z · x̂ · p̂z + x̂ · p̂z · ŷ · p̂z)︸ ︷︷ ︸
=0

+

ẑ · p̂y · ẑ · p̂x − ẑ · p̂x · ẑ · p̂y)︸ ︷︷ ︸
=0

+ p̂y · x̂ · (ẑ · p̂z − p̂z · ẑ)︸ ︷︷ ︸
−i ~

=

= i ~ (ŷ · p̂z − ẑ · p̂y) = i ~ L̂z
Solution II.

Use the formulas:

x̂ = x·, p̂n =
~
i

∂

∂ xn

Then

L̂x =

(
y
~
i

∂

∂ z
− z ~

i

∂

∂ y

)
L̂y =

(
z
~
i

∂

∂ x
− x~

i

∂

∂ z

)
L̂z =

(
x
~
i

∂

∂ y
− y~

i

∂

∂ x

)
Substituting and performing the derivations where appropriate we
will get the same result.

3. Consider a free electron (whose wave function is a plane wave) incident on
the infinite planar surface whose equation is x = 0. In the region x ≥ 0 there
is a constant potential V = 5eV . The energy of the particle is E = 5.6eV
and the velocity of the particle is perpendicular to the surface of the plane.
Determine the refraction index (i.e. the ratio of the velocities of the wave in
the two regions). (2 points)

Solution:
The ratio of the velocities is the same as the ratio of momenta,
which in turn is the same as the ratio of wave numbers. In both
regions the total energy is higher than the potential therefore the
wave function is a linear combination of terms

ei ~k r = eip r

where p and k are real numbers.
Because the movement is perpendicular to the plane in question,
which is is the y − z plane the problem is one dimensional. The
total energy

Etot =
p2

2me
+ V (x)
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so

p =
√

2me

(
Etot − V (x)

)
And V (x) = 0 when x < 0 and V (x) = 5 eV when x ≥ 0.

n =
p1
p2

=

√
E√

E − V
=

√
E

E − V
= 3.056

4. The primitive vectors of the reciprocal lattice of a crystal are: a1 = a · (i+ j),
a2 = a · (j + k), and a3 = a · (k + i), where i, j,k are Cartesian unit vectors.
What type of lattice does the crystal have? (2 points)

Solution:
During the semester we saw that these primitive reciprocal vectors
are the base primitive vectors of an fcc lattice so the corresponding
direct lattice is a bcc lattice.

Although no proof was required that the reciprocal lattice is fcc we
provide one here for your convenience

Proof :
Any lattice point may be expressed as a linear combination of the
primitive vectors a1, a2, a3:

r = n1 a1+n2 a2+n3 a3 = a·[n1 · (i + j) + n2 · (j + k) + n3 · (k + i)]

where n1, n2, n3 are integers. Selecting the x-y plane as an example
only the linear combination of i and k may have non 0 multipliers.
From this:

ron x y plane = a [(n1 + n3) · i + (n2 + n3) · k] and

(n1 + n2) · j = 0 ⇒ n1 = −n2
ron x y plane = a [(n1 + n3) · i + (n3 − n1) · k] , where n1, n3 = 0, ±1, ±2, ...

So the coordinates of the lattice points on the x-y plane may be
calculated by solving the following Diophantine equations for n1 and
n3:

x = n1 + n3

y = n3 − n1

n1 =
x+ y

2

n2 =
x− y

2

The points nearest to the origin in the first quadrant ( x ≥ 0, y ≥ 0)
are

(0.0), n1 = 0, n3 = 0

(1, 1), n1 = 0, n3 = 1

(2, 0), n1 = 1, n3 = 1

(0, 2), n1 = −1, n3 = 1

(2, 2) n1 = 0, n3 = 2
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and these are the points on one face of a cubic fcc lattice. With
similar derivation for the other faces we conclude that this is an fcc
lattice.

5. A rod of P doped Si is 1 cm long and has a diameter of 1mm. At room temper-
ature, the intrinsic concentration in silicon is ni = 1.5 ·1016m−3. The electron
and hole mobilities are µe = 0.13m2 V −1s−1 and µh = 0.05m2V −1s−1. The
P concentration is nP = 1.5 · 1017m−3 Calculate the conductivity σ of the
silicon and the resistance R of the rod. (2 points)

Solution:
P is a donor in Si, so a P doped Si is an n-type Si. Although this
is a doped semiconductor the law of mass action still valid:

nc · pv = nic · piv = n2i

The concentration of electrons in the conduction band and holes in
the valence band are

nc = Nd + ni = 1.5 · 1017 + 1.5 1016 = 1.65 · 1017m−3,

pv =
n2i
nc

=
(1.5 1016)2

1.65 · 1017
= 1.36 · 1015m−3

The j = |j| = |σE| current density is

j = e(nc·µe+pv·µh)E = 1.6·10−19·(1.65·1017·0.13+1.36·1015·0.05)E

j = 3.448 · 10−3E ⇒ σ = 3.448 · 10−3 Ω−1m−1

The resistance of the rod is

R =
1

σ

l

A
=

10−4 · 4
3.448 · 10−3 · (10−3)2 π

= 2.5eMΩ
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