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The problems presented here together with their solutions help the deeper under-
standing of the lectures. Similar problems may be given in the tests. We tried to give a
very detailed solution for every one of them, however in the tests you need not give so
much details. This material will be refreshed from time to time, so please check the date
on the title page!



Chapter 1

Formulas used in the solutions

1.1 Solid State Physics

Reciprocal Lattice
There exists an algebraic formula between the b1, b2, b3 primitive reciprocal lattice
vectors and the three primitive direct lattice vectors a1, a2, a3

b1 = 2π
a2 × a3

a1 · (a2 × a3)

b2 = 2π
a3 × a1

a1 · (a2 × a3)

b3 = 2π
a1 × a2

a1 · (a2 × a3)

(1.1.1)

Effective Mass
The effective masses of electrons and holes in Si and Ge are in Table 1.1. The
fcolorboxgrayblue!30effective mass for conductivity of electrons mcc is what we must use
for mobility or diffusion constant calculations. For cubic isotropic semiconductors with
anisotropic dispersion relations minima (again e.g. Si and Ge), one has to sum over the
effective masses in the different minima along the equivalent directions. The resulting
effective mass for bands which have ellipsoidal constant energy surfaces is given by:

mcc =
3

1

ml

+
1

ml

+
1

mt
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electrons
rel. eff.mass Si Ge

longitudinal ml/me 0.98 1.59
transverse mt/me 0.19 0.0815
dens.of.states mc/me 0.36 0.22
conduct. mcc/me 0.26 0.12

holes
rel. eff.mass Si Ge

heavy mh/me 0.49 0.33
light mlp/me 0.16 0.043
split-off band mso/me 0.24 0.084
dens.of.states mv/me 0.81 0.34

Table 1.1: Effective masses in Si and Ge

Density of State Factors in Semiconductors

Nc(T ) = 2.5 1019

(
mc

me

) 3
2
(

T

300K

) 3
2

(1.1.2)

Pv(T ) = 2.5 1019

(
mh

me

) 3
2
(

T

300K

) 3
2

(1.1.3)

Primitive Vectors for the bcc lattice

Figure 1.1: Two different primitive vector sets for the bcc lattice.
a) a1 = aex, a2 = aey, a3 = aez

b) a1 =
a

2
(ey + ez − ex), a2 =

a

2
(ez + ex − ey), a3 =

a

2
(ex + ey − ez)

drift velocity :

vdrift = µE (1.1.4)
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where the constant of proportionality is the
fcolorboxgrayblue!30mobility µ of the electrons

µ =

(
eτ

me

)
(1.1.5)

Conductivity vs. Relaxation Time

j(= σE) =

(
ne2τ

me

)
E

and

σ =
ne2τ

me

(1.1.6)

One way to determine the value of τ is from (1.1.6), where the density n of conduction
electrons is

n = LA
Zρm
A

(1.1.7)

Current Density in Semiconductors

j = e(nc µe + pv µh)E (1.1.8)

j = nie〈v〉 = nie(µe + µh)E and

j = σE

σ = nie(µe + µh) (1.1.9)

Fermi Energies

Metal| Li Na K Rb Cs Cu Ag Au Mg Al
EF (eV )| 4.7 3.1 2.1 1.8 1.5 4.1 5.5 5.5 7.3 11,9

Table 1.2: Fermi energies of some metals

Any of these energy states can be occupied by 2 electrons with opposite spins. If
each atom contribute s conduction electrons to the crystal then at T = 0K all possible
energy states below

EF (= Emax,occupied) =
~2π2

2mea2
s

2
(1.1.10)
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will be occupied and all levels above it will be empty. EF is called the
fcolorboxgrayblue!30Fermi energy of the system. We denote the corresponding k value
with kF and call it the
fcolorboxgrayblue!30Fermi wave vector.

The Fermi-Dirac distribution function

fFD(E) =
1

e(E−EF )/kBT + 1
(1.1.11)

The number of electrons (Ne = N · s):

Ne = 2
k3F
6π2

V ⇒ n(≡ Ne

V
) =

k3F
3π2

(1.1.12)

When s = 2 the length of the Fermi wave vector will be 2π/a and the allowed k values
will satisfy

k ∈
[
−π
a
,
π

a

]
For n-type semiconductors (N+

d > N−a where N+
d ≈ Ndand N+

a ≈ Na):

nc ≈ (Nd −Na) pv ≈
n2
i

Nd −Na

(1.1.13)

while for p-type semiconductors (Na > Nd):

pv ≈ (Na −Nd) nc ≈
n2
i

Na −Nd

(1.1.14)

Electron and Hole Densities

nc(T ) = Nce
−Ec−EF

kBT (1.1.15a)

pv(T ) = Pve
−EF−Ev

kBT (1.1.15b)

where Nc and Pv are the
fcolorboxgrayblue!30effective density of states in the conduction and valence bands re-
spectively:

Nc(T ) = 2 ·
(

2πmekBT

h2

)3

2 (1.1.16)

Pv(T ) = 2 ·
(

2πmhkBT

h2

)3

2 (1.1.17)
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In doped semiconductors:

n(d)
c (T ) = ni e

−
E(d)
F
−EF

kBT for an n-type semiconductor (1.1.18a)

p(a)v (T ) = ni e
−
EF−E

(a)
F

kBT for a p-type semiconductor (1.1.18b)

Extents of the Depletion Rangion

dn =

√
Na

Nd(Nd +Na)

ε∆ϕ

2 e

dp =

√
Nd

Na(Nd +Na)

ε∆ϕ

2 e

(1.1.19)

E (d)F =
1

2
(Ec + Edonor) +

3

4
kBT ln

(
mh

mc

)
(1.1.20a)

E (a)F =
1

2
(Ev + Eacceptor) +

3

4
kBT ln

(
mh

mc

)
(1.1.20b)

Donor and Acceptor levels

acceptor in B Al Ga In Te
Si 0.046 0.057 0.065 0.16 0.26
Ge 0.01 0.01 0.061 0.011 0.01

donor in P As Sb Bi
Si 0.046 0.057 0.065 0.16 .
Ge 0.01 0.01 0.061 0.011 .

Table 1.3: Shallow donor and acceptor levels in Si and Ge in eV.

Built-In Potential

e∆ϕ = kBT ln

(
NdNa

n2
i (T )

)
(1.1.21)

Mass-Action in Doped Semiconductors

For intrinsic semiconductors

nc(T ) = pv(T ) (1.1.22)

6



ni ≡ nc(T ) = pv(T ) =
√
Nc(T )Pv(T ) e

− Eg
2kBT (1.1.23)

built-in potential

∆ϕ =
1

e
kBT ln

(
NdNa

n2
i

)
(1.1.24)

Curie-Weiss law

M =
C

T − λC
B (1.1.25)

χ =
C

T − λC
=

C

T − Tc
(1.1.26)

Material Tc (K)

Co 1388
Fe 1043
MnBi 630
Ni 627
MnSb 587
CrO2 386
MnAs 318
Gd 292
Dy 88
EuO 69

Table 1.4: Courier temperatures of some crystalline materials
(Source:Wikipedia)
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Problem 1.
An infinite number of points are aligned along a line so that the distance between

the n-th and (n + 1)-th points is dn = 7.8 [(n mod 2) · 0.21 + (1 − n mod 2) · 0.17] nm,
where a mod b is the remainder of the integer division a/b. May these points describe
a one dimensional linear “crystal” and if they do then what do the neighboring points
correspond to or if they do not then why not?

Solution:
If n is an even number then n mod 2 is 0, if it is an odd number then it is 1. From the

definition above the distances between consecutive points are d1 = 7, 8 · 1.7 = 1.33nm
when n is even and d2 = 7.8 ·2.1 = 1.64nm when n is odd. These distances are repeated,
which means this structure has a translational symmetry, i.e. it may correspond to a
crystal. These points may refer to atoms in a diatomic crystal with a two atom basis
and a base vector of d1 + d2 = 2.97nm

Problem 2.
What are the coordination numbers for an sc, a bcc and an fcc lattice?

Solution:
To calculate the coordination number you may select any lattice point. We select the

ones easiest to calculate the coordinates for.

• sc - 6, because any corner point has 2 nearest neighbors in all 3 orthogonal planes
that go through it

• fcc - 12, because any corner point has 4 nearest neighbors in all 3 orthogonal planes
that go through it

• bcc - 8, because the center point has 8 neighbors

Problem 3.
Calculate the surface density of atoms in a bcc crystal with lattice constant a =

0.5nm (= 5 ), if the surface plane cuts the cells diagonally so that it is perpendicular to
the plane of the a1 and a2 vectors1.

Solution:

1i.e. it is a (110) plane - see Miller indices below

8



The plane in question goes through 4 corner atoms and the middle atom of the cell.
Only 1/4th of each of the cross sections of the corner atoms belong to our cell, while the
cross section of the middle atom is completely inside it. Therefore the number of atoms
on this plane is 2. The area of the plane is a · a

√
2 , so the density of atoms is

2

a2
√

2
=

√
2

(0.5 10−9)2
= 5.66 1018atoms

m2

Problem 4.
Enumerate the symmetries the following “crystal” has.

Solution:

This “crystal” has the following symmetry elements:

• 1 - 4-fold rotation axis (A4)

• 4 - 2-fold rotation axes (A2), 2 cutting the faces and 2 cutting the edges

• 5 mirror planes (m), 2 cutting across the faces, 2 cutting through the
edges, and one cutting horizontally through the center.
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• There is a center of symmetry (i) in the center of the prism (not shown).

Problem 5.
Is the hexagonal lattice in Fig.?? a Bravais lattice? Why? If it is not then create the

equivalent Bravais lattice from it!
Solution:

The hexagonal lattice in Fig.?? is not a Bravais lattice, because the orientation of
the surrounding points is different when viewed from points P and Q.

Select PQ and the equivalent other point pairs as a basis and select the points at the
middle of these pairs as points of the point lattice. In the unnumbered Figure the blue
lattice points form a Bravais lattice.

Problem 6.
Prove that the reciprocal lattice of an fcc lattice is a bcc lattice!

Solution:
Start with the following selection of primitive fcc lattice vectors:

Then the 3 primitive vectors in (1.1.1) are

a1 =
a

2
(i + k)

a2 =
a

2
(i + j)

a3 =
a

2
(j + k)

(1.1.27)
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Determine first the denominator in (1.1.1), which is the volume of the primitive cell:

a1 · (a2 × a3) =
a

2
(i + k) ·

(a
2

(i + j)× a

2
(j + k)

)
=
a3

8
(i + k) · ((i + j)× (j + k))

=
a3

8
[i · (i× j) + i · (i× k)

+ i · (j× k) + k · (i× j)

+ k · (i× k) + k · (j× k)]

=
a3

8
(i · (j× k) + k · (i× j))

here we used that i, j and k are perpendicular to each other. Furthermore

i× j = k, j× k = i and k× i = j

Therefore

a1 · (a2 × a3) =
a3

4

Now work with the numerators using the same formulas for i, j and k:

a2 × a3 =
a2

4
(k− j + i)a3 × a1 =

a2

4
(i− k + j)a1 × a2 =

a2

4
(j− i + k)

Which gives us the reciprocal base vectors:

b1 =
2π

a
(k− j + i)

b2 =
2π

a
(i− k + j)

b3 =
2π

a
(j− i + k)

(1.1.28)

Compare (1.1.28) with vectors in Fig. 1.1 to see that we, in fact got the primitive vectors
of a bcc lattice. The only difference is that the length is now. 2π

a
.

Because the reciprocal lattice of a reciprocal lattice is the original (direct) lattice, we
also proved that the reciprocal lattice of a bcc lattice is an fcc lattice.

Problem 7.
Determine the Miller indexes for the plane on the figure!
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Solution:
The intersections with the three axes are at 4 a1, 3 a2 and 2 a3. Then the inverse

intercepts in lattice vector units are:

1

4
,
1

3
,
1

2

To get integer numbers we have to calculate the lowest common denominator (smallest
common multiple) of this fraction, which is 12. Multiplying each fraction with 12 gives
the three Miller indexes: (346)

Problem 8.
In the previous example let the length of all the three base vectors of the direct lattice

to be a = 5 nm. Determine the distance of lattice planes (346).
Solution:

The three basis vectors are of the same length and they are perpendicular to each
other. Therefore the same is true for the reciprocal base vectors. By substitution into

(1.1.1) this length is b =
2 π

a
= 1.26nm−1. The length of the reciprocal vector perpen-

dicular to the (346) planes is

|g346| =
√

32 + 42 + 62 · 2π

a
=
√

61 · 2π

a
(=
√

61 · 1.26 = 9.81nm−1)

The distance of the planes (346) therefore is

d346 =
2π

|g346|
=

a√
61

= 0.64nm
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Problem 9.
The 3 base vectors of a crystal are orthogonal and 2.3, 3.4 and 4.5 nm long. What is

the distance of lattice planes (211)?
Solution:

The distance can be calculated from (??):

d211 =
1√

22/2.32 + 1/3.42 + 1/4.62
= 1.060nm (1.1.29)

Problem 10.
Draw all 9 lattice planes and determine the Miller indexes in a simple cubic Bravais

lattice.
Solution:

(Where is the origin of the 3 lattice vectors in the cubes?)
Problem 11.
Determine the possible diffraction angles for an X-ray of 10 keV from the (111) planes

of a simple cubic lattice, if the lattice constant is a = 5.3 Å.
Solution:

Calculate the wavelength of the X-ray:

E = h ν =
h c

λ
⇒ λ =

h c

E
= 1.24 10−10m
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To apply Bragg’s law we need to calculate the distance of the lattice planes of Miller
indices (111), which are planes going through 3 non adjacent corner of the cube. The
distance of two such planes that intersects a primitive cell (see the figure in the previous
example) is 3rd of the body diagonal:

d =
1

3

√
3 a = 0.305nm

The possible diffraction angles are determined by:

2 d sinθ = nλ

sinθ = n
λ

2 d
= 0.20325n

because |sin x| ≤ 1 n = 1, 2, 3, 4, i.e. the angles are

11.73o, 23.99o, 37.57o, and 54.39o

Problem 12.
Aluminum has three valence electrons per atom, an atomic weight of 0.02698 kg/mol,

a density of 2700kg/m3, and a conductivity of 3.54 107 S/m. Calculate the electron
mobility in aluminum. Assume that all three valence electrons of each atoms are free.

Solution:
The number of aluminum atoms per m3 is

na = 6.021023 atoms/mol · 1/0.02698 mol/kg · 2700 kg/m3

= 6.024 1028 atoms/m3

Thus the electron density in aluminum is

n = 3 · 6.024 1028 atoms/m3 = 1.807 1029 electron/m3

From (1.1.5)

µ =
σ

ne
=

3.54 107

1.807 1029 · 1.6022 10−19
= 1.22 10−3m/s

Problem 13.
What is the value of τ in silver at t = 0 oC if the measured resistivity is 1.51·10−8 Ωm?

Solution:
From (1.1.6), (1.1.7) using the definition of ρ

τ =
me

ρ(T )n e2
=

meA

LA Z ρm e2 ρ
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Silver has a single 5s1 electron so Z = 1 and the mass density is ρm = 10.49 g/cm3 =
1.049 · 104 kg/m3, A = 107.8682 g/mol = 0.1078682 kg/mol and ρ(273K) = 1.51 ·
10−8 Ωm. After substitution

τ = 4.013 · 10−14 s

Problem 14.
What is the quasi-free electron density in copper? Calculate the Fermi velocity and

momentum too
Solution:

From Table 1.2 and formulas (1.1.12) and (1.1.10)

ncopper =
(2me EF )3/2

3π2 ~3
= 3.77 1028 electron

m3

vF = 1.2 106m/s = 0.004 c kF = 1.0 10111/m

Problem 15.
Let the dispersion relations of electrons in the valence and conduction bands near the

band edges are approximated by the following functions:

Ev(k) = −3.024 10−20 eV m2 · (k − 2.45108 1

m
)2 + 13 eV

Ec(k) = 4.65 10−20 J m2 · k2 + 11.9 eV

Express the effective mass of electrons in units of the free electron mass
me = 9.1 · 10−31kg in the valence and conduction bands!

Solution:
In 1D

1

meff

=
1

~2
d2E(k)

dk2

The energies converted to Joule from eV are:

Ev(k) = −4.845 10−39 J m2 · (k − 2.45108)2 + 2.08 · 10−18 J

Ec(k) = +7.450 10−39 J m2 · k2 + 1.91 · 10−18 J

Both energy functions have the form E = a · (k − b)2 + d. The second derivative of

both functions gives twice the coefficient of the 2nd order terms (a =
d2E
d k2

), and so the

electron effective masses in the conduction and valence bands are:

m
(c)
eff = − ~2

1.490 · 10−38
= −7.46 · 10−31[kg] = −0.819me

m
(v)
eff =

~2

9.690 · 10−39
= 1.14 · 10−30[kg] = 1.260me
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Problem 16.
A rectangular copper strip 1.5 cm wide and 0.10 cm thick carries a current of 5.0 A.

Find the Hall voltage for a 1.2 T magnetic field applied in a direction perpendicular to the
strip. The molar mass and density of copper is M = 0.0635 kg/mol, and ρ = 8920 kg/m3

respectively.
Solution:

The electron configuration of copper is [Ar]3d104s1, therefore each copper atom pro-
vides one conduction electron. The number of electrons (or atoms) per unit volume
(n) can be determined from the atomic mass and density of copper using the Avogadro
number LA:

n =
LA
Vmol

=
LA ρ

Vmol ρ
=
LA ρ

M

Substituting this into2 (??) gives

UH =
M I B

LA ρ q d

=
0.0635��kg/�

��mol · 5.0A · 1.2T
6.02 · 1023 1/���mol · 8920��kg/m

3 · 1.60 · 10−19C · 10−3m

UH = 0.44µV

This is a very small voltage and it is hard to measure.
Problem 17.
Put a silicon (a semiconductor) sample of the same dimensions as in the previous

example in magnetic field of the same magnitude. Determine the Hall voltage if it
carries a current of 0.1 A! nsilicon = 1.0 · 1020 1/m3.

Solution:
Substituting I, B and n into equation (??) gives

UH =
IB

e d nsilicon
= 7.5mV

which is readily measured.
Problem 18.
Compare the electron excitation probabilities in silicon at room temperature and at

T = 450K.
Solution:

Substituting into the probability formula: at room temperature

P(300K) = 3.32 10−19,

2ncopper = LA ρ
M = 6.02·1023 1/��mol·8920��kg/m

3

0.0635��kg/��mol
= 8.46 · 1028 1/m3
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while at T = 450K:
P(450K) = 4.79 10−13

So the ratio of these probabilities is

P(450K)

P(300)
= 1.44 106

i.e. the number of electrons available for conduction is about 106 larger at 450K than at
300 K. In the same range the increase in the resistivity because of lattice vibrations is
about linear. As a consequence resistivity of Si decreases with increasing temperature,
i.e. has a negative thermal coefficient contrary to metals. The same is true for all
semiconductors.

Problem 19.
A rod of intrinsic Si is 1 cm long and has a diameter of 1mm. At room temperature,

the intrinsic concentration in the silicon is ni = 1.5 1016m−3. The electron and hole
mobilities are µe = 0.13m2V −1s−1 and µh = 0.05m2V −1s−1 respectively. Calculate the
conductivity σ of silicon and the resistance R of the rod.

Solution:

σ = nie(µe + µh) = 4.33 10−41/Ωm

R =
l

σd2π/4
= 29.4MΩ

Problem 20.
Calculate the effective densities of states in the conduction and valence bands of

germanium and silicon at 300 K.
Solution:

Substitute the effective masses for the density of states from Table 1.1 into (1.1.16)
and (1.1.17).

cm−3 Ge Si
Nc(300K) 1.02 1019 2.81 1019

Pv(300K) 5.64 1018 1.83 1019

Problem 21.
A rod of n-type extrinsic Si is 1 cm long and has a diameter of 1mm. At room

temperature, the donor concentration is 5 1014 atom/cm3 and this corresponds to 1 im-
purity for 108 Si atoms. A steady 2µA current is flowing through the bar. Determine the
electron and hole concentrations, the conductivity and the voltage across the rod. The
intrinsic electron concentration in silicon is3 ni = 1.01 1010m−3. The electron mobility
is µe = 0.13m2 V −1 s−1.

Solution:

3The previously accepted value before 1991 was 1.45 · 1010 m−3
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n-type: Na ≈ 0. From (1.1.13) n = Nd = 5 10201/m3,

pv =
n2
i

Nd

= 4.5 10131/m3

From (1.1.8) and using that pv � nc

σ = encµe = 0.104S/m

The voltage across the rod:

U =
I l

σA
= 0.12V

Problem 22.
Determine the ratio of conduction electrons from P dopants in Si to the intrinsic

electron concentration at the following temperatures: room temperature, 100oC and
500oC! Assume that the concentration of P is about 10−8 times smaller than that of the
Si atoms. Is it possible for the intrinsic electron concentration to become larger than the
one due to the dopants and if so at which temperature?

Solution:
a)

P is a donor atom, therefore the ratio of the conduction electrons from P and from the
valence band can be calculated using the Fermi energy for donor states. and neglecting

the factor ln

(
mc

mh

)
:

E (d)F = (Ec − Ed)/2, EF = (Ec − Ev)/2 = Eg/2

n
(d)
c (T )

Nd

= e
−
E(d)
F

kBT ,
nc(T )

n
= e

− EF
kBT

n
(d)
c (T )

ni(T )
=
Nd

n
· e
−
E(d)
F

kBT

e
− EF

kBT

=
Nd

n
· e−

E(d)
F
−EF

kBT =
Nd

n
· e−

(Ec−Ed)−Eg
2 kBT

Here Nd

n
is about 10−8. kBT at room temperature (300 K) equals to 0.0258 eV. At other

T temperatures kB T = kB T
(room) · T

T (room)
= 0.0258 eV · T

300K
,

therefore at 100oC (373K) and 500oC (773K) kB T is 1.243 ·0.0258 eV = 3.208 ·10−2 eV
and 2.577 · 0.0258 eV = 6.648 · 10−2 eV respectively. Using these numbers

n
(d)
c (T )

ni(T )
= 10−8 · e−

(0.046−1.12) eV
2·0.0258 eV = 10−8 · e

1.074
2·0.0258 = 4.375 · 1010

n
(d)
c (373K)

ni(373K)
= 10−8 · e

1.074
2·0.0321 = 9.605 · 106

n
(d)
c (773K)

ni(773K)
= 10−8 · e

1.074
2·0.0665 = 1.707 · 10−1
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b)

The intrinsic electron concentration reaches n
(d)
c when

10−8 · e
1.074 eV
2·kB ·T = 1 ⇒ 1.074 eV

2 · kB · T
= ln(108)

From which

kB T =
1.074 eV

36.84
= 0.0583 eV ⇒ T =

0.0583 eV

0.0258 eV
· T (room) = 678K

Problem 23.
Calculate the total voltage difference (the built in potential) between the n-type and p-

type part for a uniformly doped Silicon p-n junction with Nd = Na = 1017cm−3 at room
temperature. The intrinsic carrier density is 1.45 1014m−3 Will the built-in potential
increase or decrease with an increase in temperature?

Solution:
From formula (1.1.24)

Vp−n ≡ ∆ϕ =
1

e
kBT ln

(
NdNa

n2
i

)
(1.1.30)

Vp−n =1.38 10−23[
J

K
] 300[K]

1

1.6022 10−19[As]
ln

(
1017 1017

(1.45 1014)2

)
=0.34V

Substituting back the formula of n2
i (T ) from (1.1.23):

n2
i = Nc(T )Pv(T ) e

− Eg
kBT

and Nc(T ) = and Pv(T ), from (1.1.3)

Nc(T ) = 2.5 1019

(
mc

me

) 3
2
(

T

300K

) 3
2

Pv(T ) = 2.5 1019

(
mh

me

) 3
2
(

T

300K

) 3
2

we find that Vp−n is of the form:

e Vp−n = A · T −B · T · ln T + Eg

When T increases the change in the term containing −T · ln T is larger than the change
in the term containing T → the voltage decreases.

Problem 24.
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Determine the widths dn and dp and the electrical field strength for the Si p-n junction
of the previous example. The relative permittivity of Si is εr = 16.0.

Solution:
We may write (1.1.19) in a more convenient form:

dn = 5257

√
Na

Nd(Nd +Na)

εr∆ϕ

2
[nm]

dp = 5257

√
Nd

Na(Nd +Na)

εr∆ϕ

2
[nm]

(1.1.31)

Substituting the data from the previous example gives dn = dp = 425.8 nm.
The magnitude of E is ∆ϕ/(dn + dp) = 0.82V/4.258 10−7 m = 1.93 107 V/m.

Problem 25.
The susceptibility of a ferromagnetic material is χ = 0.0116 at T = 1100 K and

χ = 0.0042 at T = 1200 K. What material is it? What is the value of C for this
material?

Solution:
Calculate its Curie temperature first. Using (1.1.26) for both susceptibility we get

two equations for the two unkonwn, from which both Tc and C (and therefore λ too) can
be determined

χ1 =
C

T1 − Tc
⇒ C = χ1 · (T1 − Tc)

χ2 =
C

T2 − Tc
⇒ C = χ2 · (T2 − Tc)

χ1 · (T1 − Tc) = χ2 · (T2 − Tc)

Tc =
χ1 · T1 − χ2 · T2

χ1 − χ2

= 1043 K

Using Table 1.4 we find the material is iron. Furthermore from the equations above we
get the value of C = 0.66.
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