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The problems presented here together with their solutions help the deeper under-
standing of the lectures. Similar problems may be given in the tests. We tried to give a
very detailed solution for every one of them, however in the tests you need not give so
much details. This material will be refreshed from time to time, so please check the date
on the title page!



Chapter 1

Formulas used in the solutions

1.1 Quantum mechanics

Wien’s displacement law

λmax · T = 2.8977721(26) · 10−3Km (1.1.1)

If we use frequency as the parameter instead of wavelength the shape of the emission
curve changes: the frequency νmax at the location of the maximum does not correspond
to simply c/λmax. Here νmax is the frequency that corresponds to the maximum of the
emission per unit frequency. For this case Wien’s law becomes:

νmax
T

= 5.879 · 1010HzK−1

The Stefan-Boltzmann law states that the total energy emitted by a black-body per
unit surface area is proportional to the 4th power of the absolute temperature:

PA = σ T 4 (1.1.2)

where σ = 5.670373(21) · 10−8Wm−2K−4 is the Stefan–Boltzmann constant.

Photo effect

h ν =
1

2
me v

2 +W (1.1.3)

where v is the velocity of the electron and W is the work function.

Compton effect The quantity

h

me c
= 2.43 · 1012m (1.1.4)

2
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is known as the Compton wavelength of the electron. The amount ∆λ = λ′ − λ the
wavelength changes by is called the Compton shift. It is between zero (for θ = 0o) and
twice the Compton wavelength of the electron (for θ = 1800). The total energy in a 3D
potential box:

Enml =
~2 π2

2me

(
n2

L2
x

+
m2

L2
y

+
l2

L2
z

)
(1.1.5)

The probability of the transition between states “1” and “2” is

W (1→ 2) = |C2(t)|2 =
1

~2

∣∣∣∣∣∣
t∫

0

K21(τ) ei ω21 τ dτ

∣∣∣∣∣∣
2

(1.1.6)

Electron in a 1 dimensional potential box.

ϕn(x) = An sin kn x, where kn =
nπ

L
(1.1.7a)

pn = ~ kn =
~ π
L
n n = 1, 2, 3... (1.1.7b)

En =
p2n

2me

=
π2 ~2

2me L2
n2 n = 1, 2, 3... (1.1.7c)

or En = n2 E1, where

E1 =
π2 ~2

2me L2
=

h2

8me L2
(1.1.7d)

See section for Uncertainty relations

The operator of the angular momentum and its z component in spherical polar coordinates

∆ ≡ ∇2 =
1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2
. (1.1.8)

The sum of the second and third parts contains the operator of the square of the length
of the angular momentum:

1

~2 r2
L̂2 ≡ 1

r2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

]
. (1.1.9)

Miller indices The distance dhkl between adjacent lattice planes is

dhkl =
2π

|ghkl|
=

1√
h2

a21
+ k2

a22
+ l2

a23

(1.1.10)
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Problem 1.
The effective temperature of the Sun is 5778 K. What is the value of λmax for the

Sun if the Sun is a black-body?
Solution:

λmax = 2.90 · 10−3/5778 = 5.02 · 10−7m = 502nm

This corresponds to the wavelength of green light near the peak sensitivity of the human
eye.

Problem 2.
According to theory, approximately a second after its formation the Universe was

a near-ideal black-body in thermal equilibrium at a temperature above 1010K. The
temperature decreased as the Universe expanded and the matter and radiation in it
cooled. The cosmic microwave background radiation observed today is ”the most perfect
black-body ever measured in nature” as it has an anisotropy less than 1 part per 100,000.
Now, some 15 billion years after the Big Bang the peak of the observed cosmic background
radiation is at 1.07mm. What is the temperature of the cosmos?

Solution:

T = 2.898 10−3/λmax = 2.7K

Problem 3.
A human body also radiates energy. Calculate the total energy needs for an adult

to keep the body temperature constant. Because the mid- and far-infrared emissivity
of skin and most clothing is near unity we may approximate the human body with a
black-body. The average total skin area of an adult human being is about 2m2, and in
an ambient temperature of 20 oC the temperature of the bare skin is about 33oC, while
under the clothing it is about 28 oC .

Solution:
From Wien’s law (equations (1.1.1)) the peak wavelength of the thermal radiation

of a naked human body is is about 9.5µm1. To calculate the energy needed to keep
the temperature of the body constant can be obtained from the Stefan-Boltzmann law
(1.1.2). The radiated power is the difference between the power absorbed from the
environment (which is also considered a black-body) and the one emitted by the body:

Pbody = Pabsorption − Pemission = σ (T 4
environ − T 4

body)A

= −95.10W

1Therefore thermal imaging devices are tuned to be most sensitive in the 7–14 micron range. But the
human body emits at much larger wavelengths too. New imaging devices used in some border stations
or airports use wavelengths in the 1 cm–1 mm (terrahertz) range. These are most suited to detect people
smuggled in trucks.
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The total energy requirement for a whole day therefore is

E = −Pbody · 24 · 3600 = 8.216MJ = 1965 kcal

Problem 4.
Let us model the Earth with a perfect spherical black-body without an atmosphere!

Determine the effective or average surface temperature if the solar constant Io, i.e. the
amount of incoming solar electromagnetic radiation per unit area – that is incident on
a plane perpendicular to the rays, at a distance of one astronomical unit (AU) (roughly
the mean distance from the Sun to the Earth) – was 1361W/m2!

Solution:
In the stationary state the “model ‘Earth” absorbs the same amount of energy from

the Sun as it emits. The Earth-Sun distance is so large that the rays of sunshine are
almost parallel when they reach us. Half of the Earth surface is illuminated all the time
by the Sun. The total energy absorbed by the Earth as a black-body, therefore equals
to the solar constant multiplied by the cross section of the Earth perpendicular to the
Earth-Sun direction2 and by the duration ∆ t

Etot,absorbed = R2π · Io ·∆ t

If the surface temperature is T then the total radiated energy from the Earth according
to the Stefan-Boltzmann law is

Etot,rad = 4π R2σ T 4 ·∆ t

In a stationary state these two energies must be equal:

Etot,absorbed = Etot,rad

from which

T =
4

√
Io
4σ

= 278.3K = 5.3 oC

The real effective temperature of the Earth is higher, because of the atmosphere.
Problem 5.
The albedo or reflection coefficient of the Earth is 0.3. This means that 30% of the

solar radiation that hits the planet gets scattered back into space without absorption.
a) In the previous example what would be the temperature if the absorption coefficient
of the Earth was a = 0.7 instead of 1?

2The sunlight I is perpendicular to the surface only at the point nearest to the Sun. Let us take a
cross section of the sunlight with an area of A at this point. At a θ angle to the direction of the Sun this
part of the sunlight hits a larger area A′ = A·cosΘ, but only the component perpendicular to the surface
is absorbed, which is I ′ = Io/cosθ. The total absorbed radiation flux therefore P = A·cosΘ·I/cosθ = IA
is the same at every point of the illuminated surface with a perpendicular surface area of A.
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b) In climate calculations it is sometimes assumed that regardless to reflection the Earth
still emits like a black-body (this contradicts Kirchoff’s law). What would the tempera-
ture be with this assumption?

Solution:
a)

If a = 0.7 then the absorbed energy is Ia = Io a, a times as much as above, and according
to Kirchoff’s law the emission must be lower by the same factor, i.e. E ′tot,rad = aEtot,rad,
therefore the temperature is the same as was in the previous example, namely 5.3 oC.
b)
In this case

Etot,absorbed = 0.7R2π · Io ·∆ tEtot,rad = 4π R2σ T 4 ·∆ t

and the temperature

T =
4

√
0.7 Io
4σ

= 254.58K = −18.58 oC

Problem 6.
Determine the work function of potassium in electronvolts knowing that when illu-

minated by a light with a wavelength of λ = 560nm it emits electrons with a velocity of
190 km/s!

Solution:
From equation (1.1.3)

W = h ν − 1

2
me v

2 = h
c

λ
− 1

2
me v

2 = 3.38 · 10−19J = 2.21 eV

Problem 7.
Determine the maximum speed of a photoelectron emitted from a chromium surface

when illuminated with light of a wavelength of 180 nm, from knowing that at a wavelength
of 150nm the maximum photoelectron energy is 3.92 eV ? How large is the work function?
(me = 9.1.10−31kg)

Solution:
Let λ1 = 1.8 · 10−7m and λ2 = 1.5 · 10−7m and the maximum photoelectron kinetic

energy at λ2 Ekin(λ2) = 3.92 eV . From equation (1.1.3) and using ν = c/λ the work
function can be determined:

W = h
c

λ2
− Ekin(λ2) = 6.96 · 10−19J = 4.35 eV

Therefore the maximum velocity at λ1:

v(λ1) =

√
2

me

(
h
c

λ1
−W

)
= 945, 970m/s
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Problem 8.
Calculate the scattering angle and the energy transferred to the electron compared

to the energy of the incoming photon in a Compton effect, if at wavelength λ = 0.01nm
∆λ = 0.0024nm.

Solution:
From (1.1.4) the Compton angle is

cos θ = 1− me c∆λ

h
= 0.01084 ⇒ θ = 89.379 o

The energy transferred to the electron is

Ee = h c

(
1

λ
− 1

λ′

)
= h c

(
1

λ
− 1

λ+ ∆λ

)
= 3.84 · 10−15J = 24 keV

The energy of the incoming photon according to the theory of (special) relativity is

Eph = h ν = h c /λ = 1.99 · 10−14 J , i.e
Ee
Eph

= 0.19.

Problem 9.
What will be the momentum of the Compton electron if for λ = 0.005nm the photon

scattering angle is 90o?
Solution:

If the Compton angle is 90o then cos θ = 0 and

λ′ = λ+
h

mec
= 7.426 · 10−12m = 0.007426nm

Because of the momentum conservation the total momentum of the electron after the
collision equals to the total momentum difference between the incoming and outgoing
photons. The photon momentum and energy is connected by the formula pphoton =
Ephoton/c = h ν/c. Therefore

∆ pe =
h ν

c
− h ν ′

c
=
h

λ
− h

λ′
= 4.33 · 10−23 kg ms−1

Problem 10.
The ground state and the first excited state (the stationary states with the smallest

and the next lowest energy) in a hydrogen atom have an energy of E0 = −13.6 eV
and E1 = −3.4 eV respectively relative to the energy of the free electron. What is the
frequency of the photon that, when absorbed, can excite the electron from the ground
state to the first excited state? What will be the frequency of a photon emitted during
the E1 → E0 transition?

Solution:
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For a photon to be absorbed the photon energy must equal to the energy difference
of the two states in question:

h ν = E1 − E0 = 10.2 eV = 1.634 · 10−18 J ⇒
ν = 2.47 · 10+15Hz

The frequency of the photon emitted in the reverse transition must be the same as that
of the absorbed photon.

Problem 11.
Determine the wavelength of an electron that is accelerated through a voltage U .

What magnitude of voltage must be used to have a wavelength comparable to atomic
distances around 0.05-10 nm in solids?

Solution:

The kinetic energy of an electron of momentum p is Ekin =
p2

2me

. If the electron is ac-

celerated through a U voltage Ekin = eU (e is the elementary charge). The corresponding
momentum is

p =
√

2me eU

The de Broglie wavelength

λ =
h

p
=

h√
2me eU

Therefore the accelerating voltage for λ is

U =
h2

2me e λ2

For wavelengths 0.05nm and 10nm the required voltages are:

U(0.05nm) = 601.7V and U(10nm) = 0.015V

Problem 12.
What is the momentum and velocity uncertainty for a) a dust particle of diameter

500µ and mass of about 5.4 · 10−4mg, b) an ammunition bullet with a size of about
7× 40 mm and mass 5.2 g, c) a 75 kg 1.8 m× 40 cm× 20 cm object if all of them are
seemingly at rest.

Solution:
If these objects are at rest then the position uncertainty equals to their size. Therefore

∆ p =
~

2 · size
, ∆ v =

~
2 ·m · size
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a) ∆x = 5 · 10−4m, ∆ p = 1.06 · 10−31kg m
s

∆ v = 1.95 · 10−25m
s

b) ∆x1 = 7 · 10−3m, ∆ p1 = 7.54 · 10−33kg m
s

∆ v1 = 1.45 · 10−30m
s

∆x2 = 40 · 10−4m, ∆ p2 = 1.31 · 10−33kg m
s

∆ v2 = 2.54 · 10−31m
s

c) ∆x = 1.8m, ∆ p = 2.93 · 10−35kg m
s

∆ v = 3.91 · 10−37m
s

∆x1 = 0.4m, ∆ p1 = 1.32 · 10−34kg m
s

∆ v1 = 1.75 · 10−36m
s

∆x2 = 0.2m, ∆ p2 = 2.63 · 10−34kg m
s

∆ v2 = 3.52 · 10−36m
s

As you can see the momentum and velocity uncertainties are to small to be measured.
That is the reason why we may say these objects are at rest.

Problem 13.
An electron gun emits electrons with a velocity of v⊥ = 1m/s perpendicular3 to a

thin metal plate which has a hole of diameter D = 1mm (see figure). Determine the size
minimum of the spot on a screen l = 1 cm behind the hole.

3This is only an approximation, because an exactly 0 momentum component would require an in-
finitely large position uncertainty in the parallel direction.
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Solution:
The electrons arrive at the slit with a velocity and momentum perpendicular to

the slit, so the component of their momentum parallel with the slit is p‖ = 0. The slit
restricts the diameter of the electron beam to D, therefore right after the slit the position
uncertainty of the electrons will be D. This means an uncertainty in the p‖ momentum
of

∆p‖ ≥
~

2D
= 5.27 · 10−32 kg m/s

and a velocity uncertainty of

∆ v‖ ≥ ∆ p‖/me = 0.058m/s

The electrons need ∆ t = l/v⊥ time to reach the screen, during which the maximum
parallel distance they may travel is ∆ d = v‖∆ t. The minimal size of the spot on the
screen is therefore:

dmin = 2 v‖ l/v⊥ +D = 2.2mm

Problem 14.
What is the wavelength of the photon emitted by an electron transition from the 4th

to the 3rd level in a 1 dimensional potential box of size 100nm?
Solution:

From (1.1.7c) the energy difference between level 4 and 3 is

∆ E = E4 − E3 =
~2 π2

2me L2
(42 − 32) =

1.1121 · 10−68 J�2s�2 × π2

2× 9.1 · 10−31��kg × (10−7��m)2
× 7

= 4.217 · 10−23 J (= 2.632 · 10−4 eV )

and the photon frequency is

ν =
∆ E
h

=
4.217 · 10−23

6.62 10−34
= 6.365 · 1010Hz

The wavelength of the emitted photon then

λ =
c

ν
= 4.710 · 10−3m = 4.710mm.

Problem 15.
Determine the first 3 energy levels in a cubic potential box whose size is a = 10µm.

Solution:
Substituting L = Lx = Ly = Lz = 10µm into (1.1.5) we get

Enx,ny ,nz =
~2 π2

2me L2
(n2

x + n2
y + n2

z) nx, ny, nz = 1, 2, 3, ...

Enx,ny ,nz = 6, 02 · 10−26(n2
x + n2

y + n2
z) nx, ny, nz = 1, 2, 3, ...
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Because the result depends on the sum of the squares of the three numbers, the same
energy values will result for all permutations of the same three numbers:

n m l E E
(E1 := 1.81 · 10−27J) ×10−27 J

1 1 1 3 · E1 1.807
1 1 2
1 2 1 6 · E1 3.61
2 1 1
2 2 1
2 1 2 9 · E1 5.42
1 2 2
2 2 2 12 7.23
1 1 3
1 3 1 11 · E1 6.63
3 1 1

Problem 16.
An electron is confined in a 3D potential box with sides 10µm, 20µm and 30µm.

Give the energy and degeneracy of the 4 lowest lying states.
Solution:

The possible energy levels are

Enx,ny ,nz =
~2 π2

2me L2
(n2

x + n2
y + n2

z) nx, ny, nz = 1, 2, 3, ...
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n m l E(×10−27J)
1 1 1 1.36
1 1 2 1.47
1 2 1 1.61
2 1 1 2.36
2 2 1 2.61
2 1 2 2.47
1 2 2 1.72
2 2 2 2.72
1 1 3 1.58
1 3 1 1.86
3 1 1 3.36
1 2 3 1.83
2 1 3 2.58
2 3 1 2.86
3 2 1 3.61
3 1 2 3.47
2 2 3 2.83
2 3 2 2.97
3 2 2 3.72
1 3 3 2.08
3 1 3 3.58
3 3 1 3.86
2 3 3 3.08
3 2 3 3.83
3 3 2 3.97
3 3 3 4.08

Enx,ny ,nz =
h2

8me

(
n2

L2
x

+
m2

L2
y

+
l2

L2
z

)
= 6.02 10−28

(
n2
x

1
+
n2
y

4
+
n2
z

9

)
[J ]

The 4 lowest lying energy states can be determined by trying out different combinations
of the numbers 1,2 and 3 and selecting the ones with the 4 smallest energy values.

From the table we can see that there are no degenerate states for this physical object
and the indices for the 4 lowest lying levels sorted by energy in ascending order are:
(1,1,1), (1,1,2), (1,1,3) and (1,2,1).

Problem 17.
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In an aluminum–aluminum oxide–aluminum layer structure a current of electrons
with energies of 1 eV flows through the 0.5nm thick insulating oxide boundary, which
we represent as a square potential barrier with V0 = 10 eV . What is the probability of
an electron to pass through the barrier?

Solution:
Notations: a = 5 · 10−10m, E = 1 eV

q =

√
2me (V0 − E)

~
=

√
2 · 9.1 · 10−31 · (10− 1) · 1.6 · 10−19·

1.055 · 10−34

= 1.537 · 1010m−1

q a = 7.685

T ≈ e−2 q a = 2.114 · 10−7

Problem 18.
Determine the transition probability in a 1 dimensional two level system under the

influence of en external electromagnetic field. In this case the perturbation is of the form:

K(x, t) = K(x) · cosω t,

where ω is very close to ω21 in the sense4 that

ω21 + ω � |ω21 − ω|

and both are in the optical range (≈ 1014Hz). What is the range of validity of the
perturbation theory in this case? What interesting behavior will you find and why?

Solution:
From (1.1.6)

W (1→ 2) =
1

~2

∣∣∣∣∣∣
t∫

0

K21cos(ω τ) ei ω21 τ dτ

∣∣∣∣∣∣
2

where ω21 = (E2 − E1)/~ and K21 ≡
∞∫
−∞

ϕ∗2(x)Kϕ∗1(x) dx. Because cos ω τ =
(
ei ω τ +

e−i ω τ
)
/2

W (1→ 2) =
|K21|2

2 ~2

∣∣∣∣∣∣
t∫

0

(
ei (ω21+ω) τ + ei (ω21−ω) τ

)
dτ

∣∣∣∣∣∣
2

=

=
|K21|2

4 ~2

∣∣∣∣ei (ω21+ω) t − 1

ω21 + ω
+
ei (ω21−ω) t − 1

ω21 − ω

∣∣∣∣2
4This is not a serious limitation, because perturbations with other frequencies have a negligible

probability to cause a transition anyway.
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Now because of our assumptions for ω and ω21 the first term in the absolute sign may
be neglected as it is much smaller than the second one (the numerator is of the same
magnitude, while the denominator of the first term is much greater than in the second
one)

W (1→ 2) ≈ |K21|2

4 ~2

∣∣∣∣ei (ω21−ω) t − 1

ω21 − ω

∣∣∣∣2 =

=
|K21|2

4 ~2

∣∣∣∣ei (ω21−ω) t/2

ω21 − ω

∣∣∣∣2 · ∣∣ei (ω21−ω) t/2 − ei (ω21−ω) t/2
∣∣2 =

=
|K21|2

~2
sin2[(ω21 − ω) t/2]

(ω21 − ω)2

If |ω21 − ω| � 1 then the sine can be approximated with its argument and the
maximum of W ∝ |K t/~2 which increases with t. However the assumption that this is
a small perturbation will become invalid long before this maximum reaches 1. Therefore
our result is only valid for relatively small t.

The most interesting feature of this solution is that the transition probability oscil-
lates sinusoidally as a function of time between 0 and a maximum value which is still

much less than 1, otherwise this would not be a small perturbation. When t =
2 π n

|ω21 − ω|
,

where n = 1, 2, 3, ... the particle will be back in the lower state.

The reason for this behavior is that although ψ1 and ψ2 are eigenfunctions (i.e. sta-
tionary states) of the non-perturbed system they are not eigenfunctions of the perturbed
system.

Problem 19.
We define some operators with the formulas:

Ô1v(t) := vx - x coordinate of the velocity vector

Ô2f(t) := Asinf(t) - sine of a time dependent function, e.g f(t) = ω t

Ô3f(k) :=
1√
2 π

∞∫
−∞

f(k) e−i k xdk -Fourier transform of f(k)

Ô4f(x) := 3
√
f(x)

Which of these are the linear operators?
Solution:

Ô1 and Ô3

Problem 20.
Determine the adjoint of the operators p̂, x̂ and Ĥ!
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Solution:
a) adjoint of the momentum operator

According to the definition of the adjoint operator:

〈p̂†ϕ2 |ϕ1〉 = 〈ϕ2 | p̂ ϕ1〉 i.e.

〈p̂†ϕ2 |ϕ1〉 = 〈ϕ2|
~
i

d ϕ1

d x
〉

∞∫
−∞

(p̂† ϕ2)
∗ · ϕ1 dx =

∞∫
−∞

ϕ∗2 · (p̂ ϕ1) dx or

∞∫
−∞

(p̂† ϕ2)
∗ · ϕ1 dx =

∞∫
−∞

ϕ∗2 ·
~
i

d ϕ1

d x
dx

The right hand side can be calculated with integration by parts:

∞∫
−∞

ϕ∗2 ·
~
i

d ϕ1

d x
dx =

~
i

[ϕ∗2 · ϕ1]
∞
−∞ −

∞∫
−∞

~
i

d ϕ∗2
d x
· ϕ1 dx

Because both ϕ1 and ϕ2 are physical wave functions they must be square integrable,
therefore they must vanish when x→∞, so the first term is zero

∞∫
−∞

(p̂† ϕ2)
∗ · ϕ1 dx = −

∞∫
−∞

~
i

d ϕ∗2
d x
· ϕ1 dx

Because (p†ϕ)∗ = (p†)∗ ϕ∗ =
(
−~

i
d
d x

)∗
ϕ∗:

p̂† ≡ ~
i

d

d x
= p̂

The momentum operator is self-adjoint.

b) adjoint of the position operator
This is much simpler, because x̂ ≡ x· is a multiplication with a real number (or vector
in 3 dimensions) and it commutes with the wave functions, therefore

x̂† = x̂

The position operator is self adjoint too.
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c) the Hamiltonian

The Hamiltonian is a linear combination of the operators p̂2 = −~2 d2

dx2
and V (x) =

V (x)·. It is easy to prove that the product and sum of self-adjoint operators is also a
self-adjoint operator.

Because the operator of the potential is a multiplication with a function it is self-
adjoint, and p̂2 = p̂ p̂ is a product of the self-adjoint p̂ with itself, the Hamiltonian is also
self-adjoint:

Ĥ† = Ĥ

Problem 21.
Determine the eigenfunctions and eigenvalues for the 3D momentum operator!

Solution:
p̂ϕp(r) = pϕp(r)

~
i
∇ϕp(x, y, z) = pϕp(x, y, z)

~
i

(
∂, ϕp(x, y, z)

∂ x
,
∂, ϕp(x, y, z)

∂ y
,
∂ϕp(x, y, z)

∂ z
,

)
= (px, py, pz)ϕp(x, y, z)

ϕp(x, y, z) = ei(px x+py y+pz z)/~ = eipr/~

i.e. the eigenfunctions of the p̂ operator are plane waves with eigenvalues corresponding
to a continuous set of exact momenta. Because these functions are not quadratically
integrable, they can not describe any physical state of the system separately. As we saw
(Section 1.1) we must use wave packets created as a linear combination of an infinite
number of these eigenstates (⇒ Fourier transformation.) to describe a physical state.

Problem 22.
Determine whether there exists an uncertainty formula for the different components

of the angular momentum operator.
Solution:

An uncertainty formula between two physical quantities exists only if their commu-
tator is not 0. Let us calculate [L̂x, L̂y]! This requires simple algebra and not higher
mathematics. We do not even have to know the concrete form of the operators, because
their commutators show exactly how their products can be rearranged.

[L̂x, L̂y] = L̂x L̂y − L̂y L̂x =

= (ŷ p̂z − ẑ p̂y) (ẑ p̂x − x̂ p̂z)− (ẑ p̂x − x̂ p̂z) (ŷ p̂z − ẑ p̂y) =

= ŷ p̂z ẑ p̂x
−−−−−−

− ŷ p̂z x̂ p̂z
======

− ẑ p̂y ẑ p̂x
∼∼∼∼

+ ẑ p̂y x̂ p̂z
++++++

−

−ẑ p̂x ŷ p̂z
−−−−−−

+ẑ p̂x ẑ p̂y
∼∼∼∼

+ x̂ p̂z ŷ p̂z
======

− x̂ p̂z ẑ p̂y
++++++
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where the different “underlines” mark terms from which common factors may be pulled
out, because some or all of the operators in them commute and therefore their order is
not important. E.g. ŷ p̂z ẑ p̂x ≡ ŷ p̂x p̂z ẑ, because p̂x commutes with all other operators
in this term. But the order of ẑ and p̂z is important as they do not commute.

[L̂x, L̂y] = (ŷ p̂x p̂z ẑ − ŷ p̂x z p̂z)
−−−−−−−−−−−−

+ (x̂ ŷ p̂z p̂z − x̂ ŷ p̂z p̂z)
============

+

(ẑ ẑ p̂y p̂x)− ẑ ẑ p̂y p̂x)
∼∼∼∼∼∼∼∼∼∼∼∼

+ (x̂ p̂y ẑ p̂z − x̂ p̂y p̂z ẑ)
++++++++++++

=

= ŷ p̂x (p̂z ẑ − ẑ p̂z) + 0 + 0 + x̂ p̂y (ẑ p̂z − p̂z ẑ) =

= (x̂ p̂y − ŷ p̂x) (ẑ p̂z − p̂z ẑ)

Because (x̂ p̂y − ŷ p̂x) = L̂z and (ẑ p̂z − p̂z ẑ) = [ẑ, p̂z] = i~

[L̂x, L̂y] = i ~ L̂z (1.1.11a)

Similar formulas could be derived for the commutator of any two components:

[L̂y, L̂z] = i ~ L̂x (1.1.11b)

[L̂z, L̂x] = i ~ L̂y (1.1.11c)

Because their commutator is not zero, the different components of the angular mo-
mentum may not be determined with arbitrary accuracy simultaneously. There is an
uncertainty relation between them.

Problem 23.
Determine the eigenvalues and eigenfunctions of L̂z!

Solution:
This problem is best dealt with in a spherical polar coordinate system. The form of

the L̂z operator in spherical polar coordinates is (see Appendix 1.1)

L̂z =
~
i

∂

∂ φ
(1.1.12)

In such a system the form of the eigenvalue equation of L̂z becomes

~
i

d ϕ

d φ
= λϕ ⇒ ϕ(φ) = C e

i
~ λφ,
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where the C normalization constant is determined from the equation

2π∫
0

|ϕ(φ)|2 d φ = 1

2π∫
0

|C|2 d φ = 2π |C|2 = 1

C =
1√
2 π

and because ϕ is periodic in φ:

ϕ(φ+ 2 π) = ϕ(φ)

e
i
~ λ 2π = 1

λ

~
= m, where m is an integer, i.e.

λ = m ~, m = 0,±1,±2,±3, ...

Problem 24.
In a system with equidistant energy levels how many ways can you distribute 9 units

of energy among 6 identical. distinguishable particles? The energy of the ground state
(i=0) is 0, and the levels are one unit of energy distant from each other.

Solution:
In this case the observable different macrostates give the number of particles on every

level, while the microstates are the possible ways to achieve a given macrostate.
Because we must distribute 9 units of energy among the particles and the energy of

the ground state is 0, we have to use 10 energy levels.
The number of macrostates are so few (in this case 26) they can easily be counted.

The figure shows all macrostates with a total energy of 9 units, together with the number
of the microstates that correspond to the same macrostate. The first macrostate in the

first row have
6!

5!
= 6 microstates, the second one

6!

4! 1! 1!
= 30, while the first one in the

second row have
6!

2! 2! 1! 1!
= 180, etc. The total number of microstates is 2002.
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Problem 25.
Graph the distribution for Problem 24 and compare it with the Maxwell-Boltzmann

distribution function!

Solution:
We have to graph the ni vs E discrete function of Problem 24. The average occupation

numbers for the levels are

〈ni〉 =

26∑̀
=1

wi(`)ni(`)

26∑
n

wi

where the summation goes from 1 to the number of all possible macrostates, and wi(`) is
the number of the microstates that results in the `-th macrostate. The denominator is the
total number of microstates, which is 2002 as we have shown previously in Problem 24.
So for instance for i = 0

n0 =
6 · 5 + 4 · 30 · 4 + (3 · 120 + 3 · 60 + 20) · 3 + (2 · 60 + 4 · 180) · 2

2002
+

(30 + 120 + 60 + 180 + 30) · 1 + (30 + 6 + 30 + 20) · 0
2002

= 2.143

The average occupation numbers or average population of the levels:

Energy level 0 1 2 3 4 5
〈ni〉 2.143 1.484 0.989 0.629 0.378 0.210

Energy level 6 7 8 9
〈ni〉 0.104 0.045 0.015 0.003
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while in the figure you can see the results compared to that of the continuous Maxwell-
Boltzmann distribution function.

As you can see the distribution for even as few as 6 particles closely approximates
the Maxwell-Boltzmann distribution function.

Problem 26.
In a system with equidistant energy levels how many ways can you distribute 9 units

of energy among 6 fermions? The energy of the ground state (i=0) is 0, and the levels
are one unit of energy distant from each other. Calculate and graph the distribution
and compare it both with the Fermi-Dirac distribution function and with the Maxwell-
Boltzmann distribution and distribution function!

Solution:
Like in Problem 24 the observable different macrostates give the number of particles

on every level, while the microstates are the possible ways to achieve a given macrostate.
Because we must distribute 9 units of energy among the particles and the energy of

the ground state is 0, we have to use 10 energy levels.
Because fermions are indistinguishable, obey the Pauli exclusion principle and have

a half-integer spin there may be maximum 2 particles of opposite spins in each state:
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Whereas there were 26 possible configurations for distinguishable particles (see Prob-
lem 24), these are reduced to the 5 states which have no more than two particles in each
state. The average occupation numbers or average population of the levels are easier to
calculate in this case. In the table we compared these numbers with the ones we got for
the Maxwell-Boltzmann distribution.

Energy level 〈nFDi 〉 〈nMB
i 〉

0 1.8 2.143
1 1.6 1.484
2 1.2 0.989
3 0.8 0.629
4 0.4 0.378
5 0.2 0.210
6 0.0 0.105
7 0.0 0.045
8 0.0 0.015
9 0.0 0.003

In the figure we used A for the factor eα we got from our conditional maximum calcula-
tion. For the Maxwell-Boltzmann distribution A ≡ Z, for the Fermi-Dirac distribution
A ≡ e−EF /kBT .

Low energy states are less probable with Fermi-Dirac statistics than with the Maxwell-
Boltzmann statistics while mid-range energies are more probable. This difference is
dramatic for large number of particles and for low temperatures as you will see later.

Problem 27.
In a system with equidistant energy levels how many ways can you distribute 9 units

of energy among 6 bosons? The energy of the ground state (i=0) is 0, and the levels are
one unit of energy distant from each other. Calculate the distribution and compare it
with both the Maxwell-Boltzmann and Fermi-Dirac distribution!

Solution:
Like in Problem 24 the observable different macrostates give the number of particles
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on every level, while the microstates are the possible ways to achieve a given macrostate.
We must distribute 9 units of energy among the particles and the energy of the ground

state is 0, we have to use 10 energy levels.
Because any number of bosons can be in the same state (as is the case of the classical

distinguishable particles of the Maxwell-Boltzmann distribution), the total number of
macrostates is again 26. (See the corresponding figure at page 18.) But now the number
of microstates is also 26, because bosons are indistinguishable particles, so the exchange
of two bosons does not lead to a different microstate. In the next table we compared the
average occupation numbers or average population of the levels with the ones we got for
the other two distributions, but only graph the Bose-Einstein and Maxwell-Boltzmann
curves.

Energy level 〈nBEi 〉 〈nFDi 〉 〈nMB
i 〉

0 2.269 1.8 2.143
1 1.538 1.6 1.484
2 0.885 1.2 0.989
3 0.538 0.8 0.629
4 0.269 0.4 0.378
5 0.192 0.2 0.210
6 0.115 0.0 0.105
7 0.077 0.0 0.045
8 0.038 0.0 0.015
9 0.038 0.0 0.003
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